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The computational method presented here can be used to study the effect of volume fraction and particle
deformation on the rheology and microstructure of deformable fibers suspended in Newtonian fluid. In
this method, the flow is computed on a fixed regular ‘lattice’ using the lattice Boltzmann method, where
each solid particle is mapped onto a Lagrangian frame moving continuously through the domain. Instead
of the standard bounce-back method, an external boundary force is used to impose the no-slip boundary
condition at the fluid–solid interface for stationary or moving boundaries. The motion and orientation of
the fiber are obtained from Newtonian dynamics equations. Although the external boundary force
method is general, in this application it is used in conjunction with a flexible fiber model, which calcu-
lates the flexible fiber deformation by the real material properties. The methodology is validated by
comparing with experimental and theoretical results.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction Lee and Springer (1982) introduced a two-body interaction term
Newtonian fluid with suspensions usually shows complex
non-Newtonian flow characteristics. In some situations, the parti-
cles are deformable and make problems even more complicated.
Treating these suspensions as rigid particles ignores important
physical behavior. For example, the effective viscosity of actual
fiber suspension is 7–13% larger than the equivalent rigid fiber sus-
pension (Forgacs and Mason, 1959; Blakeney, 1966; Goto et al.,
1986). Understanding the underlying physical processes is very
important in simulation and optimization of engineering applica-
tions. Experimental techniques are also critical for understanding
the basic mechanism, but they have certain drawbacks in these sit-
uations. It is difficult to measure the shape and deformation of
deformable particles and rheological quantities such as self-diffu-
sivities in experiments.

Investigating the rheology of particle suspensions, Einstein
(1906) argued that for a dilute suspension of spheres, the energy
dissipation should be balanced by the work done by the motion
of the suspended particle, and the relative viscosity is a function
of the volume concentration. Based on this theory, Jeffery (1922)
developed a model for an ellipsoid in a Newtonian fluid. He calcu-
lated the stress and the shear viscosity for the dilute suspension.
The Brownian motion gives random deviation from Jeffery’s result.
Hinch and Leal (1972) described the Brownian motion by a diffu-
sion term in the equation of fiber orientation and studied the effect
of the Brownian motion on the rheology of dilute fiber suspensions.
ll rights reserved.
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into Jeffery’s equation of motion and thus showed how the fiber–
fiber interactions affect the fiber orientation distribution.

Anczurowski and Mason (1967) and Okagawa and Mason
(1973) have shown that Jeffery’s results will not hold in semi-di-
lute and concentrated regimes. Batchelor (1970, 1971) derived a
general constitutive equation for suspensions in a Newtonian fluid
and calculated the stress field of a concentrated elongated particle
suspension. Doi and Edwards (1978a,b) proposed a scheme to
extend the results from dilute theory to higher volume concentra-
tion. Dinh and Armstrong (1984) discussed the dynamics of non-
Brownian fiber suspensions using an effective medium approxima-
tion and derived a constitutive equation that includes fiber–fiber
interaction and describes the rheological behavior in the semi-con-
centrated regime. Folgar and Tucker (1984) studied the fiber orien-
tation distribution in a semi-concentrated suspension. They added
a dispersion term which is structured like a Brownian motion force
in Jeffery’s equation to model the fiber–fiber interaction. Shaqfeh
and Koch (1988, 1990) defined a diagrammatic expansion to de-
scribe the hydrodynamic interactions that cause the deviation
from the Jeffery’s orbit. Stover et al. (1992) experimentally mea-
sured the orientations of fibers in a semi-dilute suspension in a
cylindrical Couette device and examined the existing theories.
Claeys and Brady (1993) have done extensive numerical calcula-
tions for elongated particles in an unbounded fluid with hydrody-
namic interactions using Stokesian dynamics.

In all the above mentioned works, the fiber is considered as a
rigid rod-like cylinder in Stokes flow where inertia of fluid and
fiber is ignored. These assumptions allow one to develop theories
about the fiber suspension without the complication of fiber
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deformation. But it is well known that the fiber shape has an
important effect on suspension microstructure and rheology.
Experimental studies (Forgacs and Mason, 1959; Blakeney, 1966;
Goto et al., 1986) have shown that slight fiber curvature would
change the period of fiber rotation, the drag on the fiber and the
shear viscosity of the suspension. Simulations of flexible fibers,
composed of spring linked spheres (Yamamoto and Matsuoka,
1992; Joung et al., 2001) and spheroids (Ross and Klingenberg,
1997; Qi, 2006) have successfully reproduced single fiber motions
and predicted suspension viscosities. Schmid et al. (2000) and
Lindstrom and Uesaka (2008) did similar investigations by using
a ‘‘chain of rods” model to simulate a flexible fiber with high aspect
ratio.

In this study, we use the lattice Boltzmann method (LBM) with
external boundary force (EBF) (Wu and Aidun, 2009) to simulate
and obtain the microstructure and rheological properties in flexible
fiber suspensions at particle-level. The flow is computed on a fixed
regular ‘lattice’ using the lattice Boltzmann method, where the fi-
ber is mapped onto a Lagrangian frame moving continuously
through the domain. An efficient flexible fiber model has been
developed to simulate fibers with high aspect ratio. The lattice
Boltzmann method for analysis of fluid flow problems (Chen
et al., 1992; Hou et al., 1995; Mcnamara and Zanetti, 1988) has
been extended to direct simulation of particles suspended in fluid
(Ladd, 1994; Aidun and Lu, 1995; Aidun et al., 1998). In these
methods, the no-slip boundary condition at the fluid–solid inter-
face is based on the standard ‘‘bounce-back” (SBB) rule. The inter-
action boundary is represented at the mid-points of the links
which are cut by the solid particle boundary. A fluid–solid collision
function is used to account for the momentum exchange and apply
the interaction force to both fluid and the particle. With LBM–SBB
method, the solid boundary (broken line in Fig. 1a) will not move
continuously and smoothly in space; instead it will jump from
one midpoint to another causing fluctuations. To reduce this fluc-
tuation, one can use a finer lattice grid with more nodes at the
boundary increasing the computational time, or higher order
bounce back based on interpolations. Although the interpolated
bounce-back (IBB) methods (Bouzidi et al., 2001; Ginzburg and
d’Humieres, 2003) are more accurate compare to SBB, in addition
to being computationally expensive, they require at least two or
ρ

ρ

Fig. 1. (a) Regular Eulerian grid for standard bounce-back (SBB) rule. (b) Regular
Eulerian grid for Interpolated bounce-back (IBB) rule. In (a) the filled circles ð�Þ are
the fluid nodes covered by the solid, open circles ð�Þ are the fluid nodes outside the
solid particle. (c) The solid Lagrangian nodes ð�Þ and fluid Eulerian nodes ð�Þ for
external boundary force (EBF) method. The red broken line ð� � �Þ shows the solid
boundary. Note that the solid boundary nodes in (c) are located exactly on the
fluid–solid boundary C.
three fluid nodes between nearby solid surfaces for interpolation.
This excludes application to non-dilute suspensions of solid parti-
cles with close interaction between the particles or the particle and
the boundary (Chun and Ladd, 2007; Ding and Aidun, 2003). To
reach a stable and accurate result in existing LBM–SBB methods,
the diameter of the fiber, D, must be about 4–10 times the unit lat-
tice size, DxLBM (Qi, 2006; Rezak, 2008). While in LBM–EBF method,
D is about 0.4 to 1 times DxLBM . This advantage makes EBF more
efficient compared to SBB method in fiber simulation. For example,
to simulate a fiber suspension with aspect ratio rp ¼ 20, in LBM–
SBB method, the fiber length L ¼ 80, and in order to eliminate
the wall effect, the length of the fluid domain has to be at least five
times the fiber length, that is 400 � 400 � 400. But in LBM–EBF
method, the corresponding fiber length L ¼ 8 and the domain size
is 40 � 40 � 40.

The remaining part of this paper is organized as follows. In Sec-
tion 2, the LBM–EBF method and the flexible fiber model are de-
scribed in detail covering the basics of the fluid–solid interaction
including a summary of the basic steps. Several sample simulations
with rigid and flexible fiber suspensions are presented and com-
pared with theoretical solutions and experimental results in Sec-
tion 3 to validate the accuracy of the new method. We close the
paper with some concluding remarks in Section 4.
2. Methodology

2.1. Fluid–solid interaction

The presence of an external body force in the kinetic-based con-
servation equations has been discussed in classical kinetic theory
(Liboff, 2003). The connection between the source term in the
LBE and the resulting body force field in the Navier–Stokes equa-
tion has also been discussed since the inception of the LBM two
decades ago (Buick and Greated, 2000; Guo et al., 2002; He et al.,
1997; Ladd and Verberg, 2001; Martys et al., 1998). A method
based on an external boundary force (Goldstein et al., 1993) at
the fluid–solid interface in the Navier–Stokes equation applied to
the LBM (Wu and Aidun, 2009) to implement the no-slip boundary
condition for simulation of flexible fiber is presented here. The
LBM–EBF method does not have the ’Galilean Invariance’ error
associated with the SBB method as outlined by Clausen and Aidun
(2009).

To present the LBM–EBF equations, the solid and fluid domains
are defined as Ps and Pf respectively, with solid–fluid boundary,
C. There are N and M discrete solid and fluid nodes in the set of dis-
crete solid and fluid position vectors, PN

s and PM
f , respectively. The

subset of boundary nodes for the solid and fluid domain are de-
fined as Cs and Cf . The position vector in terms of unit vectors
ex; ey , and ez in the fixed Cartesian coordinate system is given by
x ¼ xex þ yey þ zez .

The discrete position vector for the jth node on ith particle is de-
fined as xl

ij 2 PN
s , and the position vector for the fluid nodes is de-

fined as xe 2 PM
f , where superscripts l and e denote solid nodes and

fluid nodes, respectively. On the solid and the fluid points x on C at
time, t, the force per unit volume acting on the solid F fsiðx; tÞ is
equal to the force per unit volume acting on the fluid gðx; tÞ; that
is, F fsiðx; tÞ ¼ �gðx; tÞ for x 2 C. The Navier–Stokes and continuity
equations with the external boundary force can be written as

q @u
@t þ u � $u
� �

¼ �$P þ lr2uþ gðx; tÞ;
$ � u ¼ 0;

)
ð1Þ

where x 2 Pf . In this equation, gðx; tÞ ¼ 0 when x R C. In the discret-
ized formulation, the external boundary force, g, is evaluated on the
fluid boundary node as shown below (Eq. (5)).
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Usually the boundary nodes will not coincide with the fluid
nodes, so the fluid velocity Uf xl

ij; t
� �

at solid boundary node xl
ij at

time t should be evaluated by

U f ðxl
ij; tÞ ¼

Z
PM

f

uðxe; tÞD xe � xl
ij

� �
dxe; xl

ij 2 Cs; ð2Þ

where Dðxe � xl
ijÞ is a discrete Dirac delta function in three-dimen-

sional domain (Peskin, 2002).
The initial velocity, position and orientation of fiber and the ini-

tial conditions of the suspending fluid are known. Due to no-slip
boundary condition, the fluid velocity at the particle boundary is
equal to the particle velocity, that is

U f xl
ij; t � DtLBM

� �
¼ Up xl

ij; t � DtLBM
� �

; ð3Þ

where the LBM time step DtLBM ¼ 1; Up xl
ij; t � DtLBM

� �
is the particle

velocity at solid boundary node xl
ij at the previous time step. The

fluid–solid interaction force per unit volume acting on the solid

boundary node F fsi xl
ij; t

� �
is given by

F fsiðxl
ij; tÞ ¼ qf U f xl

ij; t
� �

� Up xl
ij; t � DtLBM

� ��� .
DtLBM; xl

ij 2 Cs;

ð4Þ
where qf is the density of the fluid. The resulting force acting on the
fluid boundary nodes is given by

gðxe; tÞ ¼ �
Z

Cs

F fsi xl
ij; t

� �
D xe � xl

ij

� �
dxl

ij; xe 2 Cf ; ð5Þ

where g will be used as an external boundary force term in the LB
equation as will be discussed in Section 2.2.

F xl
ij; t

� �
is the combination of the fluid–solid interaction force

F fsi xl
ij; t

� �
and the external force Fext xl

ij; t
� �

which could include

the gravitational force, interparticle (electrical or lubrication)
forces; therefore,

F xl
ij; t

� �
¼ F fsi xl

ij; t
� �

þ Fext xl
ij; t

� �
; xl

ij 2 Cs: ð6Þ

So for the ith particle with N boundary nodes, the total force F i

and the torque T i on this particle are given by

F iðtÞ ¼
XN

j¼1

F xl
ij; t

� �
; ð7Þ

and

T iðtÞ ¼
XN

j¼1

xl
ij � xlc

i

� �
� F xl

ij; t
� �

; ð8Þ

respectively, where xlc
i is the center of gravity of the particle i.

The Newtonian dynamics equations for the ith particle are given
by

Mi
dUi
dt ¼ F i;

Ii
dXi
dt þXi � ðIi �XiÞ ¼ T i;

)
ð9Þ

where Mi and Ii are the mass and the inertial tensor of the ith par-
ticle; the translate velocity, U i, and angular velocity, Xi, can be com-
puted by numerical solution of Eq. (9).

2.2. Lattice Boltzmann method with external boundary force

The lattice Boltzmann equation is often written as (Aidun et al.,
1998; Chen et al., 1992; Hou et al., 1995; Mcnamara and Zanetti,
1988; Qian et al., 1992)

fkðxe þ ek; t þ 1Þ ¼ fkðxe; tÞ þ 1
s

f eq
k ðx

e; tÞ � fkðxe; tÞ
� �

: ð10Þ
Here fkðxe; tÞ is the distribution function at xe at time t; f eq
k ðxe; tÞ

is the equilibrium distribution function, s is the single relaxation
time constant and ek is the discrete velocity vector. The fluid den-
sity q and the macroscopic fluid velocity uðxe; tÞ are given by

qðxe; tÞ ¼
X

k

fkðxe; tÞ and qðxe; tÞuðxe; tÞ ¼
X

k

fkðxe; tÞek: ð11Þ

The most common lattice model for three-dimensional case is
D3Q19, which uses cubic lattice with nineteen discrete velocity
directions (Aidun et al., 1998) for the fluid particles moving along
the horizontal, vertical and diagonal links. The equilibrium distri-
bution function is defined as

f eq
k ¼ wkq 1þ 3ek � uþ

9
2
ðek � uÞ2 �

3
2
juj2

� 	
; ð12Þ

with w0 ¼ 1=3; w1�6 ¼ 1=18 (non-diagonal directions), and
w7�18 ¼ 1=36 (diagonal directions) in three-dimensional D3Q19
model. For the present model, the pseudo speed of sound is
cs ¼

ffiffiffiffiffiffiffiffi
1=3

p
and the kinematic viscosity is m ¼ ð2s� 1Þ=6.

There are two independent but overlapping grid systems in EBF
method. The fluid domain is represented by the Eulerian grid and
each fiber is represented by a Lagrangian grid. The no-slip bound-
ary condition is satisfied by the requirement that the fluid velocity
is equal to the fiber velocity at the fiber boundary node. We have to
emphasize here that the solid boundary in LBM with SBB and the
LBM with EBF is different, as show in Fig. 1. In SBB the solid bound-
ary is halfway between fluid and solid nodes, where in EBF, the so-
lid boundary represented by the Lagrangian grid nodes is the actual
and precise boundary of the particle moving continuously through
the fluid domain.

By adding an additional term to the collision function, the fluid–
solid interaction force g from Eq. (5) is included in the lattice Boltz-
mann equation as

fkðxe þ ek; t þ 1Þ ¼ fkðxe; tÞ þ 1
s

f eq
k ðx

e; tÞ � fkðxe; tÞ
� �

þ 3
2

wkg � ek:

ð13Þ
2.3. Flexible fiber model

The flexible fiber is modeled as a chain of N rods and N þ 1
hinges, as shown in Fig. 2. Each rod has an equilibrium length
of l and diameter D. The fiber length is L ¼ Nl, and fiber aspect
ratio rp ¼ L=D. We use four boundary nodes on the circumference
of each hinge to calculate the fluid–solid interaction force, as
shown in Fig. 3. Rods bend, twist about the hinges and change
the length due to the forces that are applied on the fiber bound-
ary nodes. This model is used to calculate the fiber deformation
by the real material properties such as Young’s modulus and
shear modulus.
Fig. 2. The flexible fiber is modeled as a chain of rods.



Fig. 3. The boundary nodes on the circumference of each hinge.
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The assumptions are:

(i) The suspending fluid is incompressible Newtonian fluid and
the bulk flow is assumed to be homogeneous, U1ðyÞ ¼ _cy.

(ii) The fiber diameter and length are large enough so that the
Brownian motion may be negligible.

The force densities applied on the fiber boundary nodes are the
fluid–solid interaction force F fsi, the external force which could in-
clude the gravitational force Fgra and interparticle (electrical Fele,
contact Fcon or lubrication F lub) forces. The effective volume for
each hinge is dQ � LpD2=ð4ðN þ 1ÞÞ.

In this simulation, the densities of fluid and fiber are very close
and the gravitational force is balanced by the buoyancy force and
we only consider the lubrication force. A similar lubrication force
used by Yamane et al. (1994, 2001) is also used here with an addi-
tional limitation for the case when actual contact of hinges occur.
Let V in and V jm be the velocity of hinge n in fiber i and hinge m
in fiber j, respectively (note, i could be equal to j),
rin�jm � rin � rjm is the position vector from hinge m to hinge n,
and jrin�jmj is the length of the vector. The relative velocity compo-
nent V lub

in�jm between these hinges is

V lub
in�jm ¼

rin�jm

jrin�jmj
rin�jm

jrin�jmj
� ðV in � V jmÞ

� 	
: ð14Þ

The lubrication force density between hinge in and jm is given
by

F lub
in�jm ¼ �

9lV lub
in�jm

2D jrin�jmj � D
� � : ð15Þ

Then the lubrication force density applied on hinge in is

F lub
in ¼

X
jm

F lub
in�jm: ð16Þ

To avoid fibers cross each other and to remove singularities
when overlapping of hinges occurs ðjrin�jmj � D ¼ 0Þ, the use of
Eq. (15) is restricted in the range of Dþ � 6 jrin�jmj 6 1:25D, where
� is a very small positive number to ensure a stable numerical sim-
ulation. If the gap is smaller than �, the translation and rotation
velocities are reset to make sure the relative velocity component
along the direction with minimum distance between the surfaces
is equal to zero.

The fluid–solid interaction force F fsi
in is given by Eq. (4), the total

force density imposed on hinge in is

F in ¼ F fsi
in þ F lub

in ; ð17Þ

and the total force density applied on fiber i is F i ¼
PN

n¼0F in.
The total force density on each hinge can be split into two parts,

Fmov
in causes acceleration and Fdef

in causes fiber bending, twisting and
rotation. From this definition,

Fmov
in ¼ F i=ðN þ 1Þ and Fdef

in ¼ F in � Fmov
in : ð18Þ
It is clear that
P

nFmov
in ¼ F i and

P
nFdef

in ¼ 0. The change of the
length of rod in (the rod between hinge in� 1 and in), dlin is

dlin ¼
l

EYðpD2=4Þ
pin � Fdef

in � Fdef
in�1

� �h i
dQ : ð19Þ

Here EY is the Young’s modulus of the fiber, pin is the unit vector
parallel to the axis of symmetry of rod in and

pin ¼
rin � rin�1

jrin � rin�1j
: ð20Þ

Once the forces are known, the moments acting at each hinge
can be calculated. For hinge n in fiber i, the moment that causing
flexure is

Y in ¼
XN

m¼nþ1

ðrim � rinÞ � Fdef
im dQ �

Xn�1

m¼0

ðrim � rinÞ � Fdef
im dQ : ð21Þ

This moment can be decomposed into bending and twisting
vector components, Y b

in and Y t
in respectively. The twisting mo-

ment is given by

Y t
in ¼ pinðpin � Y inÞ; ð22Þ

and the bending moment

Y b
in ¼ Y in � Y t

in: ð23Þ

The bending and twisting angles (bin and ain) can be calculated
as

Y b
in

�� �� ¼ � bin � beq
in

� �
EY I=l;

Y t
in

�� �� ¼ � ain � aeq
in

� �
EGJ=l:

ð24Þ

Here EG is the shear modulus of the fiber material, I and J are the
appropriate area moments of inertia. For a circular cylinder with
diameter D; I ¼ pD4=64 and J ¼ pD4=32. The angles beq

in and aeq
in

are specified to mimic different equilibrium fiber shapes. For an
intrinsically straight fiber, beq

in ¼ 0 and aeq
in ¼ 0.

The computational algorithm used in the LBM–EBF method can
be summarized as follows:

(i) At t ¼ t0, the initial fluid velocity in the fluid domain and the
fiber velocity, position and orientation are known.

(ii) The fluid velocity U f on the boundary node is obtained by Eq.
(2), the fluid–solid interaction force F fsi is calculated from Eq.
(4) and the lubrication force is updated by Eq. (16). Both
forces are applied on the fiber boundary nodes.

(iii) The total force and torque acting on the fiber are calculated
according to Eqs. (7) and (8); the fiber velocity, position and
orientation are updated by numerical integration, and the
fiber deformation is calculated by the flexible fiber model.

(iv) The fluid–solid interaction force also acting back on the fluid
lattice nodes are computed by Eq. (5) and the fluid field is
solved by the modified LBM Eq. (13). The computations loop
back to step (ii).
3. Sample problems

In this section we provide some example problems to validate
the LBM–EBF method for flexible fiber simulation. In the next Sec-
tion 3.1, we examine the accuracy of computing the shear stress on
the surface of a rotating cylinder at different aspect ratios rp. In
Section 3.2, we simulate the flexible fiber with different stiffness
in simple shear flow where the orbits of bent fiber are compared
with experimental data from Forgacs and Mason (1959). Compar-
ison of computational results for rigid fiber suspensions with
experiments is presented in Section 3.3. Computational simula-



Fig. 5. Non-dimensional rotation period _cTp vs. fiber aspect ratio rp in a x; y simple
shear flow.
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tions of flexible fiber suspensions and the effect of fiber stiffness on
relative viscosity are discussed in Section 3.4.

To improve the computational efficiency and remove wall ef-
fects, an unbounded shear domain is implemented based on the
Lees–Edwards boundary condition (LEBC) (Lees and Edwards,
1972) as described by Wagner and Pagonabarraga (2002) and Mac-
Meccan et al. (2009). The uniform shear flow has been reached
without the moving solid walls, the spatial inhomogeneities that
are introduced by the wall effects are eliminated and the bulk rhe-
ological properties can be recovered on smaller fluid domain with
fewer particles. Periodic boundary conditions are applied in the
flow and vorticity directions (x and z directions in Fig. 4,
respectively).

3.1. Single rigid fiber

Bretherton (1962) expanded Jeffery’s solution (Jeffery, 1922) to
any axisymmetric particle and used an effective aspect ratio re

equal to rp for an ellipsoidal particle. For a single ellipsoidal particle
in Stokes shear flow, the governing equations are given by (Jeffery,
1922)

_/ ¼
_c r2

e cos2 /þ sin2 /
� �

r2
e þ 1

� � ; ð25Þ

and

_h ¼
_c r2

e � 1
� �

cos / sin / cos h sin h

r2
e þ 1

� � : ð26Þ

Here _c is the shear rate, / and h are the orientation angles in the
spherical coordinate system, as shown in Fig. 4; x; y and z coordi-
nates are in the flow direction, velocity gradient direction and vor-
ticity axis direction, respectively.

Integrating Eqs. (25) and (26) yield

tan / ¼ re tan
2pt
Tp
þ /0

� 
; ð27Þ

and

tan h ¼ Cjre

r2
e cos2 /þ sin2 /

� �1=2 ; ð28Þ

respectively, where Cj and /0 are respectively referred to as the Jeff-
ery’s orbit constant and phase angle. The particle rotation period Tp

increases with increasing ellipsoid aspect ratio, _cTp ¼ 2pðre þ 1=reÞ.
For a rigid cylinder of aspect ratio rp ¼ L=D, the equivalent aspect
ratio has been measured by Trevelyan and Mason (1951). The com-
putational results presented in Fig. 5 shows agreement with Cox’s
solution (Cox, 1971), re ¼ 1:24rp=

ffiffiffiffiffiffiffiffiffiffi
ln rp

p
, and the experimental data

of Trevelyan and Mason (1951). In our simulation, the computa-
Fig. 4. The spherical coordinate system for a fiber in a x; y simple shear flow.
tional domain is 100� 100� 10 lattice nodes and the suspending
fibers have diameter of D ¼ 0:2 LBM unit lattice size. This demon-
strates that the no-slip boundary condition on the ellipsoid surface
is satisfied.

To show the accuracy of the interpolation in EBF method, espe-
cially for fibers that have sub-grid diameters, several simulations
were performed for fibers with diameter D ¼ 1, 0.4, 0.1 and 0.04
lattice units with fixed aspect ratio, rp ¼ 32. In these simulations,
only the size of the LBM lattice unit is changed where all other
parameters remain the same. For example, the size of the LBM lat-
tice unit for D ¼ 0:1 is ten times larger than the case D ¼ 1. As
shown in Fig. 6, results show very small deviation between each
other and show good agreement with Cox’s model with less than
2% difference.
3.2. Single flexible fiber

To quantitatively measure the bending deformation of a single
flexible fiber, Forgacs and Mason (1959) took photographs at short
time intervals during the rotation of a long Nylon filament
ðrp ¼ 170Þ. The result presented in Fig. 7 clearly shows the increase
in deformation with shear rate, _c. It also shows the asymmetry of
the loci about the y axis due to the compression and the extension
Fig. 6. Non-dimensional rotation period _cTp vs. fiber diameter D.



Fig. 7. Polar plot of the loci of the end of a Nylon filament ðrp ¼ 170Þ during rotation
in a x; y simple shear flow. The open triangles ð4Þ, open squares ð�Þ and open
upside-down triangles ðOÞ are the experiment data of Forgacs and Mason (1959) for
shear rate _c ¼ 3:20; 3:54 and 4:25 s�1. The solid line (—), dash line (- - -) and dot
line ð� � �Þ are the corresponding simulation results.

Fig. 8. The relative shear viscosity g vs. fiber volume fraction cvf in dilute regime.
The solid squares ðjÞ are the experiment data of Blakeney (1966), the open squares
ð�Þ are the results from present LBM with EBF.

Fig. 9. The relative shear viscosity g vs. fiber volume fraction cvf for fibers with
different aspect ratio. The solid triangles ðNÞ, crosses ð�Þ and solid upside-down
triangles ð.Þ are the experiment data of Bibbo (1987), the open triangles ð4Þ, open
squares ð�Þ and open upside-down triangles ðOÞ are the results from present LBM
with EBF.
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forces. To reproduce the existing experimental results, the fiber
and the suspending fluid have the same physical properties as
Forgacs and Mason used in the experiment; the suspending fibers
have diameter of D ¼ 0:0122 mm, aspect ratio rp ¼ 170 and
Young’s modulus EY ¼ 6:3 GPa. The dynamic viscosity of the sus-
pending fluid is l ¼ 9:12 Pa s. In our simulation, the computational
domain is 100� 100� 10 lattice nodes and the suspending fibers
have diameter of D ¼ 0:2 LBM unit lattice size. The simulation re-
sult is in fairly good agreement with the experimental result in
Fig. 7.

3.3. Rigid fiber suspensions

One of the main objectives of our work is to obtain a better
understanding of the rheological behavior of flexible fiber suspen-
sions. Experimental results are often presented in terms of relative
shear viscosity, defined as

g �
leff

l
; ð29Þ

where l is the viscosity of the suspending fluid, and leff is the effec-
tive shear viscosity, given by

leff ¼
Rxy

2Exy
; ð30Þ

where Exy ¼ _c=2 is the shear strain component of the strain rate ten-
sor, E, and Rxy is the shear stress component of the stress tensor R.

Blakeney (1966) used a Couette device to measure the viscosity
of rigid fiber suspensions in a Newtonian fluid. We compare the
relative shear viscosity computed from our simulations with his
experimental results. In our simulation, the computational domain
is 80� 80� 80 lattice nodes and the suspending fibers have diam-
eter of D ¼ 0:8 LBM unit lattice size. The length and aspect ratio of
a fiber is L ¼ 16 LBM unit lattice size and rp ¼ 20 respectively. As
shown in Fig. 8, the trend of the computational result follows
experimental data well. The simulations seem to have small
overprediction.

3.4. Flexible fiber suspensions

Fiber stiffness plays an important role in fiber suspension
microstructure and rheology. Forgacs and Mason (1959) and Gold-
smith and Mason (1967) have studied the flow induced deforma-
tion of a single flexible fiber in simple shear flow. A cylindrical
flexible fiber is predicted to bend when the non-dimensional
parameter bending ratio, given by

BR � EY ðln 2re � 1:5Þ
2ðl _cÞr4

p
; ð31Þ

is small. There has been experiments to measure the viscosity of
flexible fiber suspensions (Bibbo, 1987). In Bibbo’s experiment,
the nylon fiber has density of qf ¼ 1:25� 103 kg=m3, diameter of
D ¼ 0:12 mm and Young’s modulus EY ¼ 3:0 GPa. The suspending
fluid has density q ¼ 0:97� 103 kg=m3 and dynamic viscosity
l ¼ 13 Pa s. The flexible fiber suspensions are simulated with vol-
ume fraction 1:7% 6 cvf 6 12:4%, corresponding to the number of
fibers between 180 and 1260. The bending ratio corresponding to
aspect ratios rp ¼ 16, 32 and 52 are BR ¼ 2942, 248 and 42 respec-
tively. In our simulation, the computational domain is
80� 120� 80 lattice nodes and the suspending fibers have diame-
ter of D ¼ 0:4 LBM unit lattice size. As shown in Fig. 9, the simula-



Fig. 11. The / distribution for different Bending ratio BR. Fiber aspect ratio rp ¼ 16,
volume fraction cvf ¼ 0:053.
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tion results compare well with experimental results in the range of
fiber aspect ratio and volume fraction covered by the experiments.
The effect of aspect ratio at a given volume fraction on g seems to be
relatively small.

To examine the effect of bending ratio on relative viscosity, we
simulate a case with aspect ratio rp ¼ 16. Fig. 10 shows the relation
between the relative shear viscosity g and the bending ratio BR in
an unbounded shear flow. For this example, the number of fibers is
540, fiber volume fraction cvf ¼ 0:053, fiber Young’s modulus cov-
ers the range 0:15 MPa 6 EY 6 3� 103 MPa with corresponding
bending ratio in the range 0:147 6 BR 6 2942. The suspending
fluid has density q ¼ 0:97� 103 kg=m3 and dynamic viscosity
l ¼ 13 Pa s. These simulations show that decrease in bending ratio
BR (more deformable fiber) leads to increase of the relative shear
viscosity g.

One can explain this effect by considering the impact of bending
ratio on fiber orientation distribution. It is well known that the fi-
ber orientation distribution has strong effect on the suspension
shear viscosity. Batchelor (1971) derived the stress tensor of freely
moving, non-Brownian, rigid fiber suspensions, given by

R ¼ 2lE þ lfiber pppph i � 1
3

In pph i
� 

: E; ð32Þ

where E is the strain rate tensor, In is the unit tensor. lfiber is a func-
tion of fiber concentration, orientation distribution and fiber aspect
ratio. The shear viscosity, lBa, can be derived from Eq. (32) to be

lBa ¼ lþ lfiber p2
x p2

y

D E
; ð33Þ

where p ¼ pxex þ pyey þ pzez is a unit vector parallel to the fiber axis
of symmetry, and ex; ey and ez are the unit vectors in the flow direc-
tion, velocity gradient direction and vorticity axis direction, respec-
tively. hi denotes average over all fibers in the suspension. From Eq.
(33), it is clear that the fiber orientation has strong effect on the sus-
pension shear viscosity. The shear stress has the maximum value
when fiber orientation angle / is equal to p=4 or 3p=4 and has
the minimum value when / equal to 0, p=2 or p. Fig. 11 shows
the / distribution with different bending ratio BR for the same cases
depicted in Fig. 10. For increasing bending ratio (more rigid fiber),
the / distribution becomes narrower showing ‘longer-time’ orienta-
tion in the vicinity of the x—z plane, thus reducing the suspension
shear viscosity. A small asymmetry of the / distribution was ob-
Fig. 10. The relative shear viscosity g vs. Bending ratio BR. Fiber aspect ratio rp ¼ 16,
volume fraction cvf ¼ 0:053.
served in the small BR regime, indicating that fiber–fiber interaction
and fiber deformation are present at BR < 3.

In Fig. 12, the average number of contact points per fiber hnci is
plotted as a function of the bending ratio BR for the same cases de-
picted in Fig. 10. Mean values were taken for pð/Þ and hnci, by time
averaging after preconditioning. The decrease of the bending ratio
BR leads to the increase of hnci. As hnci increases, fibers interact
more frequently with increased contribution to the shear stress.
A more thorough investigation of the effects of fiber stiffness on
the rheology of fiber suspensions is in progress.

4. Conclusions

We have presented the LBM with external boundary force
method for direct simulation of flexible fibers in Newtonian sus-
pension. Application to the lattice Boltzmann method provides
an efficient and more stable computational tool compared to the
conventional LBM with SBB. The operations in LBM with EBF are lo-
cal, it can be easily programmed for parallel machines. The method
has been validated by comparing the 3D computational results
with experimental results and theoretical solutions. The
Fig. 12. The average number of contact points per fiber hnci vs. Bending ratio BR.
Fiber aspect ratio rp ¼ 16, volume fraction cvf ¼ 0:053.
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simulations seem to slightly overpredict the shear viscosity in the
dilute regime as compared to Blakeney (1966)’s data. This could be
due to the unbounded periodic shear layer used in the simulations
as compared with the wall-bounded experimental results. This ef-
fect may result in the small discrepancy in the magnitude of rela-
tive viscosity in the dilute regime. However, in the case of higher
volume fraction suspension flow, considered in Fig. 9, the magni-
tude of relative viscosity is much higher masking the small devia-
tions between the experimental and computational results.

The bending ratio of the fiber used in Blakeney’s experiments is
very large (i.e., BR � 4� 104). Therefore, in simulations, we use a
rigid fiber. We have shown that the fiber bending ratio has signif-
icant influence on the flow rheology in the range BR < 3, where for
BR > 3, the fiber can be considered to be rigid. It is clear that the
influence of fiber bending ratio on the fiber orientation distribu-
tion, shown in Fig. 11, is a major contributor to the variation in rel-
ative viscosity presented in Fig. 10. More complete details on the
underlying physics will be reported upon completion of the work
in progress.
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